

Catalysis Today 56 (2000) 35-44

Oxidation of isobutane over supported noble metal catalysts in a palladium membrane reactor

Troy M. Raybold, Marylin C. Huff*

Center for Catalytic Science and Technology, Department of Chemical Engineering, University of Delaware, Newark, DE 19716, USA

Abstract

Pd membranes are often used to remove the H_2 produced in dehydrogenation reactions, thereby relieving the equilibrium limitations on the product yield. These processes, however, can still be limited by the slow kinetics of the dehydrogenation reaction. If O_2 is added to the system, the reaction proceeds through both the very fast oxidative dehydrogenation route as well as the dehydrogenation route. Thus, the addition of O_2 can suppress a kinetic limitation, while the removal of H_2 through the Pd membrane can alleviate the equilibrium limitation imposed on the system by the dehydrogenation route. In this study, we have examined the oxidative dehydrogenation of isobutane in a Pd membrane reactor over Pt/α - Al_2O_3 and Rh/α - Al_2O_3 monoliths and Pt/γ - Al_2O_3 pellets. We have examined $iC_4H_{10}: O_2$ ratios of 1.0 to 2.0, resulting in operating temperatures ranging from 400 to $700^{\circ}C$. While most of this heat is generated by the exothermicity of the reaction, some additional heating was used to boost conversions. Typical contact times ranged from 0.04 to 0.25 s. By continuously removing the H_2 produced, isobutylene yields increased. Yield improvements depended strongly on the balance of reaction time with H_2 removal time and the importance of the dehydrogenation in the overall reaction scheme. ©2000 Elsevier Science B.V. All rights reserved.

Keywords: Palladium membrane; Membrane reactor; Oxidative dehydrogenation

1. Introduction

The US government passed several amendments to the Clean Air Act in November 1990 in an effort to curb automotive air pollution. The amendments require that gasoline be reformulated to contain at least 2.7% oxygen by weight, while the fraction of high-octane aromatics is limited to 25% by volume [1]. In response to these requirements, methyl *tert*-butyl ether (MTBE) has emerged as a promising, high-octane, oxygen-rich gasoline additive [2]. Since isobutylene is a precursor of MTBE, demand for isobutylene has increased beyond its traditional sup-

fax: +1-302-831-2085.

E-mail address: huff@che.udel.edu (M.C. Huff).

ply, and the development of additional, efficient methods of producing isobutylene has become necessary.

The typical method of producing isobutylene industrially from isobutane involves dehydrogenation over a Cr_2O_3/Al_2O_3 catalyst at $\sim 650^{\circ}C$ [3].

$$iC_4H_{10} \rightleftharpoons iC_4H_8 + H_2 \quad \Delta H_r^0 = +118 \,\text{kJ/mol} \quad (1)$$

A large heat input is required to drive this endothermic reaction and maintain the reaction temperature. In addition, carbon deposition can quickly deactivate the catalyst [4,5]. Under typical partially deactivated operating conditions, isobutylene yields are $\sim 20\%$ [6]. Industrial processes overcome catalyst deactivation by alternating reaction steps and complex regeneration steps. With these novel process designs, isobutylene yields approaching 50% have been reported [7,8].

 $^{^{*}}$ Corresponding author. Tel.: +1-302-831-6327;

However, the attainable yield of isobutylene is still limited by thermodynamic equilibrium.

Therefore researchers have proposed conducting dehydrogenation reactions in H_2 -selective membrane reactors, where the removal of co-produced H_2 alleviates the thermodynamic limitation and increases product yield [3,9–24]. In such processes, H_2 is selectively removed through a membrane (often Pd or Pd alloy), resulting in an equilibrium shift of the dehydrogenation reaction toward products. Improvements of 50 to 400% in isobutylene yield have been achieved by using a membrane reactor [3,18]. However, many of these membrane reactors operate under a kinetic limitation, since the dehydrogenation reaction is inherently slow [25].

A route to isobutylene which may alleviate this kinetic limitation is the oxidative dehydrogenation of isobutane.

$$iC_4H_{10} + \frac{1}{2}O_2 \rightarrow iC_4H_8 + H_2O$$

 $\Delta H_r^0 = -124 \text{ kJ/mol}$ (2)

In contrast to the previous reaction system, Eq. (1), oxidative dehydrogenation is an exothermic reaction with very fast kinetics. Higher yields of isobutylene can be obtained over a Pt/Al_2O_3 catalyst at shorter contact times and with much less heat input [26,27]. Fig. 1 shows a schematic of the primary reactions in the oxidative dehydrogenation of isobutane. In these experiments, O_2 is the limiting reactant and is usually consumed very quickly after initial contact with the catalyst. Therefore, while oxidative reactions (such as oxidative dehydrogenation, partial oxidation to syngas, and combustion to CO_2 and H_2O) dominate initially, non-oxidative reactions (such as dehydro-

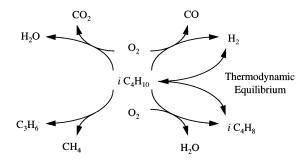


Fig. 1. Schematic of the oxidative dehydrogenation of isobutane reaction system.

genation and cracking) become increasingly important once O_2 is depleted. Note that, in Fig. 1, isobutylene is generated by both, the oxidative and non-oxidative dehydrogenation routes. The dehydrogenation route (in the absence of O_2) is thermodynamically limited, and this limitation is affected by the co-production of isobutylene and H_2 via oxidative routes.

In Fig. 2, we show equilibrium values of isobutane conversion and isobutylene selectivity at various $iC_4H_{10}:O_2$ ratios and isothermal operating temperatures. Although not shown, O_2 conversion is complete under all conditions. For all calculations, there is 10% N_2 in the feed. The data in Fig. 2 were obtained by using the HYSYS simulation package to determine the set of products which minimizes the overall Gibbs' free energy at a given feed composition and operating temperature [28]. The allowable products

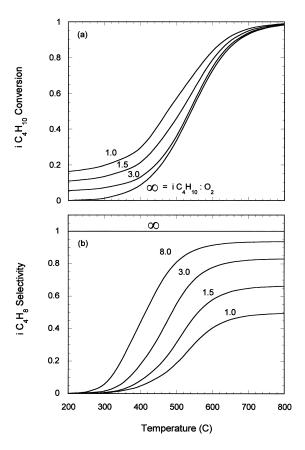


Fig. 2. Calculated (a) equilibrium isobutane conversion, and (b) isobutylene selectivity as a function of temperature and $iC_4H_{10}:O_2$ ratio at 10% N_2 dilution.

were limited to iC₄H₈, CO, CO₂, H₂, and H₂O. In the low-temperature limit of Fig. 2, deep oxidation of iC₄H₁₀ to CO₂ and H₂O dominates, so that the isobutylene selectivity and the isobutane conversion are very low. The isobutane conversion is low because the O₂ supply is quickly depleted in forming CO₂ and H₂O. As the temperature increases, dehydrogenation becomes increasingly important, and partial oxidation to CO and H2 becomes more favorable than deep oxidation. In the high-temperature limit, both partial oxidation and dehydrogenation compete, while deep oxidation is not significant. In this limit, the relative importance of partial oxidation and dehydrogenation depends on the amount of O2 fed. When little O2 is available (high iC₄H₁₀:O₂ ratios), dehydrogenation dominates, isobutane conversion is lower, and selectivity to isobutylene is higher; when more O₂ is fed (low iC_4H_{10} : O_2 ratios), partial oxidation becomes dominant, conversion increases slightly, and isobutylene selectivity suffers. Although conversion does increase at these lower $iC_4H_{10}:O_2$ ratios and higher temperatures, Fig. 2 clearly shows that isobutane conversion is still equilibrium-limited. Since O₂ is always completely consumed, the data also imply that the equilibrium limitation on the system is imposed by the dehydrogenation reaction. If this limitation can be relieved, the overall isobutylene yield will increase.

Our goal, then, is to combine the advantages of oxidative dehydrogenation (fast kinetics) and dehydrogenation in a membrane reactor (relief of the thermodynamic limitation) by using a Pd membrane reactor in an oxidative dehydrogenation reaction system. We show that isobutylene yield is indeed improved by the removal of H₂ through a Pd membrane. The extent of isobutylene yield improvement depends primarily on the balance between catalyst contact time and the characteristic time for H₂ diffusion across the membrane. However, the relative importance of the dehydrogenation route in the overall reaction scheme is also an important issue.

2. Experimental

2.1. Membrane reactor configuration

The oxidative dehydrogenation of isobutane is carried out over both the supported-Pt and supported-Rh

catalysts in a stainless-steel flow reactor with a Pd-foil membrane for H₂ removal, as illustrated in Fig. 3. The reactor is separated into an upper reaction side and a lower sweep side by the Pd membrane, which is sealed by compression between two copper gaskets. The reactor is 1.6 cm in diameter and each chamber is 7.6 cm in depth. Reactants are premixed, enter the reaction side near the axis, contact the catalyst and membrane, and react to form products which exit through an axial tube. Hydrogen also exits the reaction side by diffusing across the Pd membrane to the sweep side. On the sweep side, N₂ enters axially, sweeps away the permeating H_2 , and then exits. The reactor is externally heated and the entire module is insulated. Temperature is measured by two type K (Chromel/Alumel) thermocouples located on the Pd-foil surface on the sweep side and at the top of the catalyst bed on the reaction side. Both the thermocouples are placed 0.5 cm from the centerline.

2.2. Membrane

Two thicknesses (25 and 75 μ m) of 99.9% Pd foil were obtained from Alfa Aesar and used as membranes in these experiments, each with an area of $2.0\,\mathrm{cm}^2$. Pure Pd was chosen over the more permeable Pd/Ag alloy, since it was more readily available and had a lower fabrication cost. A H₂-permeability study of the fresh 75- μ m membrane was conducted in an empty reactor over a range of temperatures (150–450°C), and the results are presented in Fig. 4. As expected, the permeability coefficient ($P_{\rm m}$) could be described by the Arrhenius expression, since permeation through Pd is an activated process:

$$P_{\rm m} = P_{\rm mo} \left[\exp \left(-\frac{E_{\rm p}}{RT} \right) \right] \tag{3}$$

In addition, the obtained activation energy ($E_{\rm p}=18.6~{\rm kJ/mol}$) and preexponential factor ($P_{\rm mo}=0.353~{\rm mol/m/h/atm^{0.5}}$) of the permeability coefficient compare favorably with previously determined values [29–33]. For example, Itoh, et al. [19] measured an $E_{\rm p}$ of 18.5 kJ/mol and a $P_{\rm mo}$ of 0.370 mol/m/h/atm^{0.5}.

2.3. Reaction conditions

The feed to the reaction side is iC_4H_{10} (Matheson, 99.5%), O_2 (BOC 99.6%), and O_2 (BOC, 99.99%)

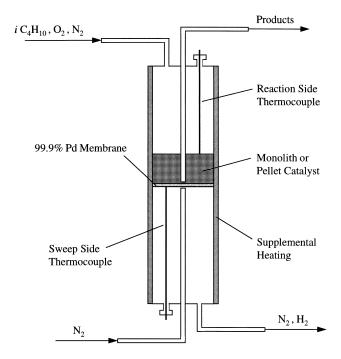


Fig. 3. Sketch of the Pd membrane reactor used in this investigation.

diluent. In all experiments, the diluent is 10% of the total flow. The feed to the sweep side is N_2 (BOC, 99.998%). The flow rates of all these species are controlled by Brooks 5850E mass flow controllers. Precise control of the reactants is essential to ensure that the reactor is always operated outside the flammability region. Fig. 5 shows the experimental operating conditions and the flammability region for iC_4H_{10} in a mixture of N_2 and O_2 . We examine $iC_4H_{10}:O_2$ ratios between 1.00 ± 0.05 and 2.00 ± 0.10 at total reaction side flow rates of 0.30 ± 0.02 and 0.85 ± 0.02 SLPM. The reactions occur at 400–700°C, resulting in temperature adjusted catalyst contact times ranging from 0.04 to 0.25 s. The sweep side flow rate is maintained at four times the total flow rate to the reaction side. The total pressure on the reaction side is 1.5 psig, while the total pressure on the sweep side is 0.5 psig.

2.4. Catalyst

Three catalysts are considered in this study: (1) 0.45 wt.% Pt on an 80 ppi (pores per linear inch) ceramic foam monolith, (2) 0.45 wt.% Rh on an 80 ppi ceramic foam monolith, and (3) a bed of 3.2 mm,

0.5 wt.% Pt/γ - Al_2O_3 eggshell-coated pellets. The monoliths are composed of 92% α - Al_2O_3 and 8% SiO_2 . Pt and Rh are deposited separately on the two monoliths by wet impregnation of the support with either a saturated aqueous solution of H_2PtCl_6 or a saturated solution of $[Rh(CO_2CH_3)_2]_2$ in acetone,

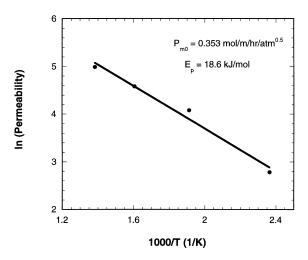


Fig. 4. Temperature effect on permeability coefficient $(10^4 \text{ mol/m/h/atm}^{0.5})$ for the fresh, 75 μ m, 99.9% Pd membrane.



Fig. 5. Flammability region for *i*C₄H₁₀-O₂-N₂ mixtures, with experimental operating compositions shown.

followed by calcination in air and reduction in H_2 . The pellet catalyst is supplied by Alfa Aesar. The reactor side is either loaded with one monolith weighing 1.45 g, with a N_2 BET surface area of $0.2 \text{ m}^2/\text{g}$, or 4.0 g of the pellet catalyst, which has a surface area of $89 \text{ m}^2/\text{g}$ [34].

2.5. Product analysis

The effluent compositions from both the reaction side and the sweep side are determined using an on-line HP 6890 gas chromatograph equipped with both flame ionization (FID) and thermal conductivity (TCD) detectors. The measurement of CH₄ concentration in both the FID and TCD, and the measurement of the inert N₂ concentration in the TCD serve as internal standards. The concentrations of all components except H₂O are measured relative to calibration standards. The concentration of H₂O is determined by an oxygen atom balance. The remaining atom balances (carbon and hydrogen) close to within 10%. For all the results presented below, selectivities (S_i) for carbon-containing species are calculated on a carbon atom basis:

$$S_i = \frac{c_i y_i}{\sum_j c_j y_j} \times 100 \tag{4}$$

where c_i is the number of carbon atoms in species i, and y_i represents the moles of species i. The summation is carried out over all the species. Selectivities for H_2 and H_2O are calculated similarly on a hydrogen atom basis.

2.6. Typical operation

Before each experimental trial, the reactor is heated to 250°C with inert flow. This heat input is maintained after the introduction of the reactants and for the duration of the experimental trial. The net reaction is exothermic, so reaction initiation produces an abrupt temperature rise in the reactor. After \sim 1 h, the reactor reaches a steady state operating temperature. The reactor temperature ranges from 400 to 700°C, depending on the iC₄H₁₀: O₂ ratio, total flow rate, and the catalyst. All data is collected at steady state, 1 h after reaction initiation. After each trial at a specific iC₄H₁₀: O₂ ratio, the reaction is extinguished by replacing reactants with N2 at the same flow rate. The flow of O2 is removed first to prevent flammability. After the reactor cools, the process is repeated for a different $iC_4H_{10}: O_2$ ratio.

In order to conduct experiments without H_2 removal, the lower copper gasket used to seal the membrane in the reactor module is replaced with a solid copper disk. The disk prevents any H_2 from being removed to the sweep side. The Pd foil is still present in these experiments, to account for any catalysis occurring on the Pd surface.

3. Results

3.1. Catalyst behavior in the absence of H_2 removal

In Fig. 6, typical conversions, selectivities, and reaction-side temperatures at various $iC_4H_{10}:O_2$ ratios are reported for reaction over the Pt-monolith, Rh-monolith, and Pt-pellet catalysts. These data were acquired without H2 separation at a total flow rate of 0.85 SLPM. Oxygen conversion is >98% for all experimental trials. Fig. 6a shows that both the autothermal reaction temperature and the isobutane conversion decrease as the iC_4H_{10} : O_2 ratio increases away from the upper flammability limit ($iC_4H_{10}: O_2 \sim 0.9$). This behavior is typical of an exothermic oxidative dehydrogenation system operating with a constant heat input, and is observed for all three catalyst systems [35,36]. Fig. 6a also shows that the Pt pellets exhibit a reaction temperature higher than that of the other catalysts. This is due to increased CO2 formation

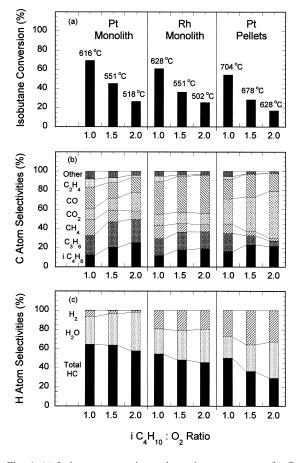


Fig. 6. (a) Isobutane conversion and reaction temperature, (b) C atom selectivities, and (c) H atom selectivities for Pt monolith, Rh monolith, and Pt pellets catalysts as a function of $iC_4H_{10}:O_2$ ratio at 0.85 SLPM for trials without H_2 removal.

over the Pt-pellet catalyst, which causes the overall reaction to become more exothermic.

Fig. 6b,c show the selectivity for all carbon and hydrogen containing species. The Pt-monolith data confirm many of the trends observed previously for the oxidative dehydrogenation system [27]. At higher $iC_4H_{10}:O_2$ ratios, which correspond more closely to the stoichiometric ratio for oxidative dehydrogenation ($iC_4H_{10}:O_2=2.0$), selectivity to isobutylene increases. At lower $iC_4H_{10}:O_2$ ratios, which approach the stoichiometric composition for syngas production ($iC_4H_{10}:O_2=0.5$), selectivities to CO and H_2 increase. In all cases, substantial cracking of iC_4H_{10} to C_3H_6 and CH_4 occurs.

Over the Rh monolith, there is a much higher selectivity to CO and H_2 than over the Pt monolith for a given $iC_4H_{10}:O_2$ ratio. In addition, instead of decreasing with increasing $iC_4H_{10}:O_2$ ratio, selectivity to syngas remains fairly constant. These results are expected, since Rh is known to be an excellent catalyst for the production of syngas [26,36,37]. Cracking products (C_3H_6 , C_2H_4 , CH_4) are still formed, but to a lesser extent than over Pt.

In the case of Pt pellets, selectivity to CO_2 and H_2 dominates. This difference can be attributed to the large surface area and more acidic nature of the γ -Al $_2O_3$ present in the pellets, but absent in the α -Al $_2O_3$ monolith support. High surface area catalysts tend to be detrimental in catalytic systems where the desired product is a reactive intermediate [38]. In such systems, high surface area catalysts, particularly noble metals, favor complete combustion products.

3.2. Isobutylene yield improvement by H_2 removal

Fig. 7 shows the effect of H_2 removal on isobutylene yield and reaction temperature at three $iC_4H_{10}:O_2$ ratios and two total flow rates over the Pt pellet catalyst and the 75 μ m Pd membrane. At all $iC_4H_{10}:O_2$ ratios and total flow rates, H_2 removal improves the isobutylene yield. This improvement is slightly greater at lower flow rates. Note that, with the reactor operated at a constant heat input, the removal of H_2 is observed to lower the measured reaction temperature. Based on the thermodynamics in Fig. 2, a lower temperature should result in a lower iC_4H_8 yield. Thus, the observed improvement in iC_4H_8 yield with H_2 removal is even more significant.

In Fig. 7, larger iC_4H_8 yields occur at higher flows and lower iC_4H_{10} : O_2 ratios. These yields, however, are somewhat lower than those reported in previous studies [27]. Unfortunately, the design of this reactor leads to significant backmixing which reduces the achievable selectivity to reactive intermediate products (iC_4H_8) in favor of final products (cracking products, CO, CO_2). This is especially evident at the lower flow rates. However, this reactor design is convenient for the use of Pd foil as the membrane material. Foils are relatively simple to obtain, handle, and seal, making this a reasonable reactor design for screening experiments.

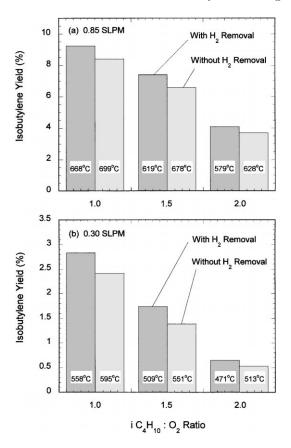


Fig. 7. Isobutylene yield and reaction temperature with and without H_2 removal through a 75- μ m Pd membrane over Pt-pellet catalyst as a function of $iC_4H_{10}:O_2$ ratio at (a) 0.85 SLPM, and (b) 0.30 SLPM.

3.3. Effect of flow rate on H_2 removal

In Table 1, the partial pressure of H_2 in the sweep-side effluent is shown as a function of flow rate for the three catalysts investigated. The partial

pressure of H_2 in the reaction side effluent is also shown. These experiments were conducted at a $iC_4H_{10}:O_2$ ratio of 1.0 with a 75- μ m Pd membrane. As Table 1 shows, the partial pressure of H_2 on the sweep side was kept low at all times to maximize the transmembrane driving force.

If the total reaction-side flow rate is decreased from 0.85 to 0.30 SLPM for a non-oxidative dehydrogenation, one would expect that both, the reaction-side H₂ partial pressure and the permeation rate of H₂ would be unchanged. Since, in these experiments, the ratio of reaction and sweep-flow rates is kept constant, the partial pressure of H₂ on the sweep side would increase by a factor of ~ 2.8 (or 0.85/0.30). The data recorded in Table 1 indicate that this is not at all what is observed in the oxidative dehydrogenation system. When the flow rate is decreased over the Pt pellets, the partial pressure of H₂ in the sweep effluent only increases by a factor of 1.2, while the H₂ partial pressure actually decreases over the Pt monolith. This behavior occurs because (unlike non-oxidative dehydrogenation), the partial pressure of H₂ driving permeation on the reaction side substantially decreases at the lower flow rate, as shown in Table 1. In this reaction system, the presence of O2 causes an increase in the oxidation of H₂ to H₂O at the lower flow rate. Therefore, as flow rate decreases (or catalyst contact time increases), the partial pressure of H₂ on the reaction side decreases, which counteracts the expected increase in the H₂ partial pressure in the sweep effluent. As a result of this behavior, the increase of catalyst contact time alone cannot substantially increase the impact of H₂ removal on the reaction system, as in non-oxidative dehydrogenation systems. Instead, it must be balanced to allow the Pd membrane enough time to remove a substantial fraction of the available H₂, yet not so long

Table 1 Effect of flow rate on partial pressure of H_2 in the sweep- and reaction-side effluents in trials with a 75- μ m Pd membrane at an $iC_4H_{10}:O_2$ ratio of 1.0 over the Pt-monolith, Rh-monolith and Pt-pellet catalysts

Catalyst	Flow (SLPM)	Catalyst contact time (s)	H ₂ in sweep exit (Torr)	H ₂ in reaction exit (Torr)
Pt pellets	0.85	0.06	0.56	188.4
_	0.30	0.25	0.69	63.7
Pt monolith	0.85	0.04	0.37	41.9
	0.30	0.16	0.18	5.03
Rh monolith	0.85	0.04	0.61	77.9
	0.30	0.16	1.25	72.9

Table 2 Effect of flow rate and Pd membrane thickness on the partial pressure of H_2 (Torr) in the sweep effluent at an $iC_4H_{10}:O_2$ ratio of 1.0 over the Pt-pellet catalyst

Pd membrane thickness	Total flow rate	
	0.30 SLPM	0.85 SLPM
75 μm 25 μm	0.69	0.56
25 μm	1.99	0.73

a time that the available H_2 is completely oxidized to H_2O .

Although the partial pressure of H_2 in the reaction effluent decreases dramatically over the Pt catalysts at lower flow rates, Table 1 indicates that it only decreases slightly over the Rh monolith. This behavior can be attributed to the slow kinetics of H_2O formation on Rh [37]. Consequently, the counteracting decrease in H_2 driving force occurs to a lesser extent, and the partial pressure of H_2 in the sweep effluent increases by a factor of 2.1, which is much closer to the 'expected' behavior.

3.4. Effect of membrane thickness on H_2 removal

Table 2 presents the effect that membrane thickness at two flow rates has on the partial pressure of H₂ in the sweep effluent. By decreasing the thickness of the Pd membrane from 75 to 25 µm at a constant flow rate, one would ideally expect to observe a factor of 3.0 increase in the sweep effluent H₂ partial pressure. For low flow rates, Table 2 indicates that the partial pressure of H₂ removed increases by a factor of 2.9, but at the higher flow rate, it only increases by a factor of 1.3. The diminished effect of membrane thickness at the higher flow rate is probably due to the combination of increased carbon deposition rates and higher temperatures. Such conditions can cause the rate limiting step of the transport process to shift from bulk diffusion to adsorption or absorption, thereby reducing the dependence on membrane thickness. This has been observed in other studies where poisonous species are present on the palladium surface [39,40]. There was no visual evidence to support other possibilities, such as the formation of palladium oxides or inadvertent incorporation of copper from the gasket into the Pd foil, both of which would result in a distinct color change in the metal.

4. Discussion

4.1. Necessary conditions for yield improvement by H₂ removal

Fig. 7 shows that removal of H₂ through a Pd membrane results in an isobutylene yield improvement for an oxidative dehydrogenation system. The extent of that improvement varies with flow rate, catalyst, and membrane thickness. In previous investigations of H₂-selective membrane reactors, it has been noted that the extent of yield improvement depends primarily on the balance of catalyst contact time and the time for H₂ removal across the membrane [13,14,18,23,41]. If the system is extremely diffusion limited (i.e. if the catalyst contact time is much shorter than the required time for H₂ removal across the membrane), H₂ removal has a limited impact on the product yield. This criterion can be summarized by the following characteristic time ratio:

$$\frac{\text{Catalyst contact time}}{\text{H}_2 \text{ removal time}} = \frac{\tau_{\text{rxn}}}{\tau_{\text{rem}}} \equiv \frac{v_{\text{H}_2}}{v}$$

$$= \frac{[P_{\text{m}}][p_{\text{H}_2}^{1/2}][A_{\text{m}}]}{[t_{\text{m}}][v]} \tag{5}$$

where $v_{\rm H_2}$ is the volumetric flow of H₂ across the membrane, v the total volumetric flow rate through the reaction side, $P_{\rm m}$ the permeability coefficient of the membrane, $p_{\rm H_2}$ the partial pressure of H₂ on the reaction side, $A_{\rm m}$ the area of the membrane, and $t_{\rm m}$ the thickness of the membrane. This expression assumes that the partial pressure of H₂ on the sweep side is negligible, which the data in Tables 1 and 2 support. The characteristic time ratio is experimentally determined using the ratio of volumetric flow rates, since both, v and $v_{\rm H_2}$ are measured quantities. This ratio is affected by several factors, as indicated in Eq. (5). As the value of the characteristic time ratio increases, the system becomes less diffusion limited, and H₂ removal results in greater improvements in isobutylene yield

In the absence of O_2 , the value of the characteristic time ratio can be increased simply by lowering the reaction side volumetric flow rate (ν). However, for oxidative dehydrogenation over Pt catalysts, the partial pressure of H_2 on the reaction side (p_{H_2}) is strongly related to the reaction-side flow rate. A

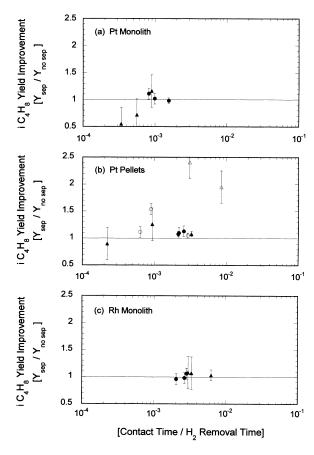


Fig. 8. Improvement in isobutylene yield as a function of the characteristic time ratio over (a) Pt-monolith, (b) Pt-pellet, and (c) Rh-monolith catalysts. Data represent experimental trials using the 75- μ m Pd membrane at 0.85 and 0.30 SLPM (\bigcirc , \triangle , respectively) and trials using the 25 μ m Pd membrane at 0.85 and 0.30 SLPM (\bigcirc , \triangle , respectively).

decrease in the flow rate affects the characteristic time ratio by decreasing both ν in the denominator and $p_{\rm H_2}$ in the numerator of Eq. (5). Therefore, in oxidative dehydrogenation systems, the characteristic time ratio cannot be substantially increased (and may even decrease) with a decrease in total flow rate.

4.2. Yield improvement over various catalysts

In Fig. 8, isobutylene yield improvement (defined as the ratio of isobutylene yield with H₂ separation to the isobutylene yield without H₂ separation) is plotted

against the ratio of catalyst contact time to H_2 removal time for the three different catalyst systems.

4.2.1. Pt monolith

Fig. 8a presents the isobutylene yield improvement for the Pt monolith at various iC₄H₁₀: O₂ ratios and total flow rates, using a 75-µm Pd membrane. In this case, the catalyst contact time is \sim 1000 times shorter than the characteristic time for H₂ removal, so H₂ removal does not significantly improve isobutylene yield. A comparison of the high and low flow rate data in Fig. 8a indicates that decreasing the total flow rate actually can lower the ratio of catalyst contact time to H₂ removal time due to a decrease in H₂ partial pressure caused by oxidation to H₂O. Manipulation of the iC₄H₁₀: O₂ ratio also influences the partial pressures of H2 on the reaction side and affects the characteristic time ratio value, with the highest time-ratio values generally occurring at the lowest $iC_4H_{10}:O_2$ ratios.

4.2.2. Pt pellets

In Fig. 8b, an analogous plot is made for the Pt-pellet catalyst at different total flow rates, $iC_4H_{10}:O_2$ ratios, and membrane thicknesses. This system is less membrane diffusion-limited than the Pt monolith, although catalyst contact time is still substantially less than the time for H_2 removal. The higher characteristic time ratios are primarily due to the increased production of H_2 in the Pt pellets. For the thinner membrane and the lower total flow data, the ratio approaches 10^{-2} , and definite yield improvements can be observed. At lower ratio values, however, isobutylene yield is not improved by H_2 separation (i.e. a ratio of ~ 1.0).

4.2.3. Rh monolith

The Rh monolith data are shown in Fig. 8c. Higher selectivity to H_2 leads to characteristic time ratios approaching 10^{-2} , similar to the Pt-pellet data. However, even at the highest ratio values, there is no indication of isobutylene yield improvement. This suggests that the dehydrogenation route in the Rh system is of little importance. The dominant route for H_2 production over Rh is partial oxidation to syngas. The isobutylene yield over Rh is not impeded by any equilibrium constraints imposed by dehydrogenation, and so the

removal of H_2 has only a limited effect on the reaction system. Fig. 8c also shows that, over this catalyst, decreasing the flow rate increases the characteristic time ratio as it would for a dehydrogenation in the absence of O_2 . The loss of H_2 to H_2O at lower flow rates does not readily occur over a Rh surface. Therefore, since p_{H_2} is not a strong function of flow rate, the characteristic time ratio exhibits a more typical inverse relationship to the total flow rate.

5. Conclusions

We have considered the oxidative dehydrogenation of isobutane over Pt and Rh catalysts in a Pd membrane reactor. We have found that H2 removal can improve isobutylene yield for cases where the ratio of catalyst contact time to H₂ removal time becomes large. Ideally, we would like this ratio to approach unity. However, due to the characteristic short catalyst contact times required for selective oxidation to iC₄H₈ over Pt catalysts, the system is most often extremely membrane diffusion-limited. Existing diffusion limitations cannot be overcome by a simple decrease in total flow rate, since this results in loss of H_2 to H_2O (as well as a loss of iC_4H_8). To relieve the diffusion-limitations and achieve more substantial isobutylene vield improvements, reactor design variables must be manipulated. Thinner membranes with larger surface areas are an option, but there are practical limits to the adjustment of these variables. Efforts are underway to improve the reactor design to operate at lower total flow rates with less backmixing and more efficient membrane contacting.

We have also shown that, even with sufficient balance between catalyst contact time and H₂ removal time, yield improvements are only achieved in the presence of a good dehydrogenation catalyst, where the dehydrogenation route is actually imposing a substantial constraint on the isobutylene yield. In the oxidative dehydrogenation of isobutane over Rh, we found that no such constraint exists.

Although the yield improvements obtained in this study were modest, and the system may not currently be cost-effective, this work has helped to experimentally explore the boundaries of the region where Pd membranes can benefit a reaction system.

References

- [1] D. Seddon, Catal. Today 15 (1992) 1.
- [2] R. Clark, R. Morris, D. Spence, E. Tucci, Energy Prog. 7 (1987) 164.
- [3] T. Matsuda, I. Koike, N. Kubo, E. Kikuchi, Appl. Catal. A 96 (1993) 3.
- [4] Z. Chen, A. Derking, W. Koot, M. Van Dijk, J. Catal. 161 (1996) 730.
- [5] S. Udomask, R. Anthony, Ind. Eng. Chem. Res. 35 (1996) 47.
- [6] S. Zdonik, in: L. Albright, B. Crynes, W. Corcoran (Eds.), Pyrolysis: Theory and Industrial Practice, Academic Press, New York, 1983, pp. 162, 392.
- [7] M. Olbrich, D. McKay, D. Montgomery, US Patent 4926005 (Phillips Petroleum 1990).
- [8] P. Van Diepen, et al., EP Patent 0561439 A2 (Shell Internationale Research Maatschappij B. V., 1993).
- [9] B. Abdalla, S. Elnashaie, AIChE J. 40 (1994) 2055.
- [10] J. Ali, D. Rippin, A. Baiker, Ind. Eng. Chem. Res. 34 (1995) 2940.
- [11] J. Ali, A. Baiker, Appl. Catal. A 155 (1997) 41.
- [12] J. Collins, et al., Ind. Eng. Chem. Res. 35 (1996) 4398.
- [13] J. Deng, J. Wu, Appl. Catal. A 109 (1994) 63.
- [14] J. Deng, Z. Cao, B. Zhou, Appl. Catal. A 132 (1995) 9.
- [15] E. Gobina, R. Hughes, J. Membr. Sci. 90 (1994) 11.
- [16] E. Gobina, R. Hughes, Chem. Eng. Sci. 51 (1996) 3045.
- [17] E. Gobina, R. Hughes, Appl. Catal. A 137 (1996) 119.
- [18] T. Ioannides, G. Gavalas, J. Membr. Sci. 77 (1993) 207.
- [19] N. Itoh, W. Xu, K. Haraya, J. Membr. Sci. 66 (1992) 149.
- [20] T. Kikuchi, Catal. Today 25 (1995) 333.
- [21] Y. Cao, B. Liu, J. Deng, Appl. Catal. A 154 (1997) 129.
- [22] J. Shu, et al., Can. J. Chem. Eng. 75 (1997) 712.
- [23] H. Weyten, K. Keizer, A. Kinoo, J. Luyten, R. Leysen, AIChE J. 43 (1997) 1819.
- [24] V. Zaspalis, et al., Appl. Catal. 74 (1991) 223.
- [25] B. Raich, H. Foley, Appl. Catal. A 129 (1995) 167.
- [26] S. Bharadwaj, L. Schmidt, J. Catal. 155 (1995) 403.
- [27] M. Huff, L. Schmidt, J. Catal. 155 (1995) 82.
- [28] HYSYS NetVers. v 1.2.2, Hyprotech Ltd., Calgary, 1997.
- [29] E. Wicke, H. Brodowsky, in: G. Alefeld, J. Volkl (Eds.), Hydrogen in Metals, vol. 2, Springer, New York, 1978, p. 73.
- [30] Y. Balovnev, Russ. J. Phys. Chem. 48 (1974) 409.
- [31] S. Koffler, J. Hudson, G. Ansell, Trans. AIME 245 (1969) 1735.
- [32] V. Pugachev, F. Busol, E. Nikolaev, B. Nam, Russ. J. Phys. Chem. 49 (1975) 1045.
- [33] L. Rubin, Englehard Ind. Tech. Bull. 7 (1966) 55.
- [34] D. Flick, M. Huff, J. Catal. 178 (1998) 315.
- [35] T. Raybold, M. Huff, Stud. Surf. Sci. Catal. 110 (1997) 501.
- [36] M. Huff, L. Schmidt, J. Phys. Chem. 97 (1993) 11815.
- [37] D. Hickman, L. Schmidt, Science 259 (1993) 343.
- [38] B. Gates, Catalytic Chemistry, Wiley, New York, 1992, 236 pp.
- [39] C. Peden, B. Kay, D. Goodman, Surf. Sci. 175 (1986) 215.
- [40] F. Chen, Y. Kinari, F. Sakamoto, Y. Nakayama, Y. Sakamoto, Int. J. Hydrogen Energy 21 (1996) 551.
- [41] T. Ioannides, X. Verykios, Catal. Lett. 36 (1996) 165.